重入锁
接下来,我们来讨论“重入”这个问题。在说这个问题前,我先解释一下个概念,叫“可重入锁”。
当一个线程获取锁时,如果没有其它线程拥有这个锁,那么,这个线程就成功获取到这个锁。之后,如果其它线程再请求这个锁,就会处于阻塞等待的状态。但是,如果拥有这把锁的线程再请求这把锁的话,不会阻塞,而是成功返回,所以叫可重入锁(有时候也叫做递归锁)。只要你拥有这把锁,你可以可着劲儿地调用,比如通过递归实现一些算法,调用者不会阻塞或者死锁。
了解了可重入锁的概念,那我们来看 Mutex 使用的错误场景。Mutex 不是可重入的锁。
想想也不奇怪,因为 Mutex 的实现中没有记录哪个 goroutine 拥有这把锁。理论上,任何 goroutine 都可以随意地 Unlock 这把锁,所以没办法计算重入条件. 所以,一旦误用 Mutex 的重入,就会导致报错。下面是一个误用 Mutex 的重入例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
func foo(l sync.Locker) {
fmt.Println("in foo")
l.Lock()
bar(l)
l.Unlock()
}
func bar(l sync.Locker) {
l.Lock()
fmt.Println("in bar")
l.Unlock()
}
func main() {
l := &sync.Mutex{}
foo(l)
}
|
写完这个 Mutex 重入的例子后,运行一下,你会发现类似下面的错误。程序一直在请求锁,但是一直没有办法获取到锁,结果就是 Go 运行时发现死锁了,没有其它地方能够释放锁让程序运行下去,你通过下面的错误堆栈信息就能定位到哪一行阻塞请求锁:

学到这里,你可能要问了,虽然标准库 Mutex 不是可重入锁,但是如果我就是想要实现一个可重入锁,可以吗? 可以,那我们就自己实现一个。这里的关键就是,实现的锁要能记住当前是哪个 goroutine 持有这个锁。我来提供两个方案。
实现可重入锁关键就是:实现的锁要能记住当前是哪个 goroutine 持有这个锁
方案:
- 通过 hacker 的方式获取到 goroutine id,记录下获取锁的 goroutine id,它可以实现 Locker 接口
- 调用 Lock/Unlock 方法时,由 goroutine 提供一个 token,用来标识它自己,而不是我们通过 hacker 的方式获取到 goroutine id,但是,这样一来,就不满足 Locker 接口了
可重入锁(递归锁)解决了代码重入或者递归调用带来的死锁问题,同时它也带来了另一个好处,就是我们可以要求,只有持有锁的 goroutine 才能 unlock 这个锁。这也很容易实现,因为在上面这两个方案中,都已经记录了是哪一个 goroutine 持有这个锁。
方案一:goroutine id
这个方案的关键第一步是获取 goroutine id:
通过 runtime.Stack 方法获取栈帧信息,栈帧信息里包含 goroutine id。你可以看看上面 panic 时候的贴图,goroutine id 明明白白地显示在那里。runtime.Stack 方法可以获取当前的 goroutine 信息,第二个参数为 true 会输出所有的 goroutine 信息,信息的格式如下:
1
2
3
|
goroutine 1 [running]:
main.main()
....../main.go:19 +0xb1
|
解析 goroutine id:
1
2
3
4
5
6
7
8
9
10
11
|
func GoID() int {
var buf [64]byte
n := runtime.Stack(buf[:], false)
// 得到id字符串
idField := strings.Fields(strings.TrimPrefix(string(buf[:n]), "goroutine "))[0]
id, err := strconv.Atoi(idField)
if err != nil {
panic(fmt.Sprintf("cannot get goroutine id: %v", err))
}
return id
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
// RecursiveMutex 包装一个Mutex,实现可重入
type RecursiveMutex struct {
sync.Mutex
owner int64 // 当前持有锁的goroutine id
recursion int32 // 这个goroutine 重入的次数
}
func (m *RecursiveMutex) Lock() {
gid := GoID()
// 如果当前持有锁的goroutine就是这次调用的goroutine,说明是重入
if atomic.LoadInt64(&m.owner) == gid {
m.recursion++
return
}
m.Mutex.Lock()
// 获得锁的goroutine第一次调用,记录下它的goroutine id,调用次数加1
atomic.StoreInt64(&m.owner, gid)
m.recursion = 1
}
func (m*RecursiveMutex) Unlock() {
gid := GoID()
// 非持有锁的goroutine尝试释放锁,错误的使用
if atomic.LoadInt64(&m.owner) != gid {
panic(fmt.Sprintf("wrong the owner(%d): %d!", m.owner, gid))
}
// 调用次数减1
m.recursion--
if m.recursion != 0 { // 如果这个goroutine还没有完全释放,则直接返回
return
}
// 此goroutine最后一次调用,需要释放锁
atomic.StoreInt64(&m.owner, -1)
m.Mutex.Unlock()
}
|
尽管拥有者可以多次调用 Lock,但是也必须调用相同次数的 Unlock,这样才能把锁释放掉。这是一个合理的设计,可以保证 Lock 和 Unlock 一一对应。
方案二:token
让 goroutine 自己来提供标识.
不管怎么说,Go 开发者不期望你利用 goroutine id 做一些不确定的东西,所以,他们没有暴露获取 goroutine id 的方法。
调用者自己提供一个 token,获取锁的时候把这个 token 传入,释放锁的时候也需要把这个 token 传入。通过用户传入的 token 替换方案一中 goroutine id,其它逻辑和方案一一致。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
// Token方式的递归锁
type TokenRecursiveMutex struct {
sync.Mutex
token int64
recursion int32
}
// 请求锁,需要传入token
func (m *TokenRecursiveMutex) Lock(token int64) {
if atomic.LoadInt64(&m.token) == token { //如果传入的token和持有锁的token一致,说明是递归调用
m.recursion++
return
}
m.Mutex.Lock() // 传入的token不一致,说明不是递归调用
// 抢到锁之后记录这个token
atomic.StoreInt64(&m.token, token)
m.recursion = 1
}
// 释放锁
func (m*TokenRecursiveMutex) Unlock(token int64) {
if atomic.LoadInt64(&m.token) != token { // 释放其它token持有的锁
panic(fmt.Sprintf("wrong the owner(%d): %d!", m.token, token))
}
m.recursion-- // 当前持有这个锁的token释放锁
if m.recursion != 0 { // 还没有回退到最初的递归调用
return
}
atomic.StoreInt64(&m.token, 0) // 没有递归调用了,释放锁
m.Mutex.Unlock()
}
|